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Anomalous pinch effect and energy exchange in tokamaks *

M. B. Isichenko,™® A. V. Gruzinov, P. H. Diamond, and P. N. Yushmanov
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319

(Received 7 November 1995; accepted 5 December)1995

It is shown that, under very generic assumptions of the nature of plasma turbulence in an
inhomogeneous magnetic field, the anomalous particle and energy fluxes, in addition to usual
diffusive terms, involve purely convective terms not directly associated with density or temperature
gradients. The anomalous convective transport results from the conservation, on turbulent time
scale, of adiabatic invariants of particle motion in the inhomogeneous magnetic field and the
Liouville-theorem constraint on the microscopic dynamics, thus furnishing the mechanism of the
anomalous pinch effect in tokamaks. This theory also predicts an electron-turbulence energy
exchange, which can be interpreted as a turbulent enhancement of the electron-ion energy exchange.
Collisions introduce important modifications to the turbulent mechanisms of the pinch effect. It is
argued that the nondiffusive effects are intrinsic to tokamak transport and should be included in
power-balance analyses. €996 American Institute of PhysidsS1070-664X96)90505-4

I. INTRODUCTION sarily related to the inductive loop voltage. Several quasilin-
ear theories reported various pinch terms in the anomalous
The tokamak energy confinement, clearly one of thefluxes?'~?*The pinch terms were also present in the bounce-
most important reactor characteristics, is routinely measuregverage equations of Ref. 25, although dropped in the final
by the heat diffusivityy relating the thermal fluxq to the  results.
temperature gradier@T as g=—(3n/2)xVT. It is not as Smolyakovet al?® highlighted the role of the Liouville
clear, however, whether the transport in tokamaks is of pur¢heorem which precludes quasilinear convective fluxes in the
diffusive nature and whethey is the most relevant transport canonical phase space,{), and pointed out that such fluxes
characteristic. Indeed, there exists a body of experimentalan appear upon the projection onto the coordinate space
evidence that the heat flux involves a significant inward More recently, an important clarification of the physics of the
convective componeht® and even bears certain nonlocal anomalous pinch effect in tokamaks was made by
feature&=8 not easily reducible to combined diffusive and Yanko¥’?® and Nycander and Yankd¥° who proposed
convective fluxes. that turbulent plasma in the absence of particle and energy
The phenomenon of profile consistency, or resili€nce sources assumes a state close to the so-calk&dlent eq-
observed for plasma temperatdr®!* density'2'® or uipartition. This state corresponds to a phase-space density
pressuréhas been known for a long time, yet the underlyinguniform on the surfaces of the two constant adiabatic invari-
particle and energy pinch effects have been much less studnts u=mv?/(2B) and J=¢muydl, a version of the er-
ied than the particle and thermal diffusivities. For the onegodic hypothesis where the adiabatic invariants play the role
thing, this has been due to the lack of a clear physical explaef the no longer conserved energy. The applicability of the
nation of the turbulent, or anomalous pinch effect. Also, thestatistical mechanics to self-consistent plasma turbulence is
experimental measurements of off-diagonal terms of thewot clear, but some predictions of this approach are in a
transport matrix and the convective fluxes are much morejualitative agreement with experiments. In the state of tur-
complicated, especially for the energy transport, where théulent equipartition, the plasma density and temperature are
pinch effect is often obscured by a substantial energy sourd@homogeneous, and there are no particle or energy fluxes.
at the plasma center. Still, the typically peaked tokamak denSuch a state is usually marginally stable to the modes poten-
sity profiles in the absence of significant particle sources afially responsible for driving the plasma to this st&té?—2
the center indicate a significant particle pirtéh. When applied to collisionless toroidal plasma with a large
In our terminology, the pinch effect stands for particle aspect ratioR/r>1, the turbulent equipartition corresponds
and energy fluxes not directly associated with either densityo the distribution function
or temperature gradients. The usual off-diagofeioss
fluxes appear in the neoclassical theéefl Ref. 15, which FO6J ) =TolJ,1)/q(r), @
also predicts an inward pinch velocity proportional to thewheref(x,J,u) is the particle density with the given adia-
toroidal loop voltagé®’ This neoclassical pinch effect is patic invariantsg(r)=rB,/(RB;) is the safety factorB,
typically too weak to explain the experiment, but it can beandB, are the toroidal and the poloidal magnetic fields, and
made stronger by phenomenologically introducing an enr andR are the minor and the major radii, respectively. Here
hanced electron-electron collision frequenty and in what follows, we adopt a uniform convention
Turbulent mechanisms of the pinch effect are not neceswherebyf denotes the particle density in the phase space
specified byf's argumentgexcept timé. The tokamak safety

*Paper 21B1, Bull. Am. Phys. Soé0, 1668(1995. fa_ctor profile,q(r), is typica_lly an increasing function of the
"Invited speaker. minor radius, and the densif}) is peaked toward the center,
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thus constituting the collisionless pinch effect of Yankov. The paper is organized as follows. In Sec. Il the role of
Equation (1) describes the distribution of trapped particlescanonical coordinates is discussed in the context of turbulent
subject to radial drifts in low-frequency electrostatic modesdiffusion. In Sec. Ill toroidal magnetic flux coordinates are
whereas passing particles effectively average out the effectsed to represent the bounce averaged turbulent drifts of
of turbulence and eventually come to a collisional equilib-trapped electrons in a Hamiltonian form and to formulate the
rium with the inhomogeneously distributed trapped particleskinetic response of collisional electrons to a low-frequency
The conjectur€ ?® that the profile of the total density electrostatic turbulence. In Sec. IV the kinetic equation is
n(r) will essentially follow the turbulent equipartitiofd), solved using the large parametefr=>1, wherev, is the
namely n(r)qg(r)=const, was questioned in the previous electron collision frequency angk is the confinement time,
letter®® where collisions were taken into account and theand electron transport equations are obtained for the regime
peakedness of the plasma density, in a thin torus witlw,e>w>ve. The “canonical” profiles corresponding to the
r/IR<1, was found to b&(r/R). The reason lies in a can- absence of particle and energy fluxes are discussed in Sec. V.
cellation characteristic of the thin torus limit and, in the sim-In Sec. VI we discuss implications and possible extensions of
plest terms, is as follows. The integration of Efj) overJ  our results. Several auxiliary calculations are organized in
= p|L involves the factor of the connection lendth=qgR, appendices. In Appendix A, we summarize the large-aspect-
and the strong radial dependence gi@) drops out of the ratio tokamak limit of the arbitrary toroidal geometry used
particle densityn= [f(x,J,u)dJdu. Put differently, an iso- throughout most of the paper. Here we also consider the
tropic Maxwellian with constant density and temperature refegime of very low-frequency modes,e> v>w, in which
writes in the &,J,u) coordinates exactly as E@l) in the  the pinch effect is als®@(r/R). In Appendix B, the transport
trapped region for/R<1. It is not evera priori evident that ~ Of passing particles by low-frequency turbulence is studied.
taking into account higher-order corrections will result in an
inward pinch. Under some simplifying assumptions made in|. THE ROLE OF CANONICAL COORDINATES IN
Ref. 33, the convection was found inward for TURBULENT DIFFUSION
d log g/d log r>—3/8. .
In this paper, without restriction to particular turbulent Turbulent transport is caused by the random walk of par-

modes. we discuss the phvsics of the anomalous pinch eﬁetilees in randomly fluctuating fields. Pure diffusion is an un-
: ' } 1€ PRYSICS P : Blased random walk of a particle with no average displace-
in a magnetically axisymmetric tokamak. The mlcroscoplcment (x)=0, and with a linearly growing mean square

dynamics of particles in the turbulent fields is Ham"toman’displacemen(x2>=2Dt, D being the diffusivity. The intui-

which imposes certain constraints on the dynamics €Vefive motivation behind the diffusion approximation is that

without knowing the details of the turbulence. The most fun- o . .
damental constraint is the Liouville theorem, which redictszero-average fluctuating fields imply a zero-average velocity.
! P However, the well-known example of the ponderomotive

a pure particle diffusion in the action space upon introducingf .
X ) . - -~ Force (cf. Ref. 39 says that the zero-average, at a given
suitable action-angle variables. Under additional constraints ( 4 say g ghe

. . : L ) acceleratiork=a(x,t) implies an average force, if the enve-
such as the conservation of the first adiabatic invariaffor (x,t) imp g

turbulent f hi than th f lope of the HF fielda is inhomogeneous. Even more trans-
urbulent frequencyu much 1ess than the gyro trequency parently, the pure-diffusion approximation fails for the first-
w¢) and the second invariaidt (for @ much less than the

ift- ionx=Vv(x,t) with th -
parallel bounce frequenayy), the pure diffusion along the order (drift-type) equationx=v(x.t) wi © zero-average,

. : . e . at fixedx, velocity v, because the pure diffusion cannot be
third action translates into both a diffusivity and an averageindependent of the coordinates used to track down the par-

pinch velocity in the coordinate space. The pinch Ve'°City_2cle position. Indeed, if, in some coordinatethe particle is

arises as a result of the magnetic field inhomogeneity, as i xecuting an unbiased random walk with the diffusivily

the gradient oB were a “thermodynamic force,” due to the in another coordinate, say =x2, the particle has a nonzero
coordinate-dependent constraints of the adiabatic invariancg\verage velocity(x')=2Dt

The formalism of the action-space diffusion predicts colli- It is the transition from single-particle dynamics to an

sionless turbulent equipartitions in agreement with Refs. Z%Werage Fokker-Planck description, where the average

and 29 and also allows to include collisions in the transporYpinCh) velocity does or does not appear. Below we show
analysis. _ _ that there is no average velocity in the canonical action vari-
We address both particle and energy transport, with &pjes phyt, before doing so, consider what happens to a dif-

specific emphasis on electrons for which the theory’s smal}qion equation when variables are changed. Suppose there is
parameters, such as vy, are better justified and for which |, average particle velocity in some coordinates

more anomalies are obser.ved experimentally. The source %ftn=(9x~(D-&xn), where n is the particle density in the
plasma turbulence is not discussed, and the transport is StUQ'space.(ln order to have the terms in the Fokker-Planck
ied for the given, under fairly generic assumptions, electro-equation simply related to the particle motion, the

static fluctuations. Of course, the test-particle approach 'aCkéensity must be thus definédUpon the change of the
the self-consistent dynamics of turbulence; therefore, °”|X/ariables x—x'(x), and introducing the x’-density

those transport features, which are not too sensitive to thﬁ/(xl t) = n(x,t)|a(x)/d(x')|, we obtain the transport equa-
assumptions of the turbulence spectrum, are valuable predigyn with a convection term:
tions of this theory. The anomalous particle and energy pinch

ri 7j

effects and the anomalous energy exchange are among these , , , . rij K 9X 79X
on'=dy-(D"-dyn"—=V'n"), D'M=D"— —,

features. ! x - (D0 ) ax* ox
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sponding angular velocities are much greater than the pertur-
. 2 bation frequency w, remain conserved as adiabatic
invariants!* For example, ifo.> 0> 0=, the first two
Thus, a nonlinear change of coordinates renders puradiabatic invariantsy andJ, are conserved, and the third
diffusion biased; that is, with an average velocity in the newinvariant ¢ is broken thus introducing radial diffusion of
coordinates. Obversely, an existing bias can be removed hyouncing particles. If we are not interested in the angular
changing to another, “natural” set of coordinates in which coordinates«;, the distribution functionf(l,a) (where
there is no convective particle flux. Generally speaking, how *?%= u,J,) can be integrated over the angles and Eq.
do we know that Cartesian coordinates, or the tokamak mi¢3) becomes the action-diffusion equation:
nor radiusr, are such natural coordinates for the purpose of i ,
anomalous plasma transport? In fact, the observed pinch ef- (=B (LY] @
fect suggests that Cartesian spatial coordinates are not, afdle conservation of'= and, possibly)>=J means that
below we show that the poloidal magnetic flyxr) is the  the components of the diffusion tenddP involving the cor-
natural radial coordinate in which, without collisions, responding indices are all zero.
trapped electrons diffuse purely and tend to distribute homo-  Alternatively, for w,>w, the single-particle motion can
geneously, with the per-unit-flux densityN.(y)  be averaged over the fast gyration and bouncing before in-
«n(r)q(r)=const. troducing the kinetic description. The bounce-average drift
In general, if the particle motion is Hamiltonian and sto- of the guiding center can be written in the Hamiltonian form
chastic, the canonical coordinates (p,q) furnish the natu-  using the Clebsch coordinates, and¢ defined locally for a
ral coordinates in the above sense. This is due to the Liougeneral magnetic fiel&(x) by
ville theor_er_n which says that the phase-space velocity, B=Va,xVyl(2m). (5)
z=u(zt), is incompressiblej,- u=0, and therefore the con-
tinuity equation for the distribution functionf(z,t), The magnetic field lines are given by the intersection of the
a,f+a,- (fu)=0, has the exact phase-space-uniform solutiorfurfacesj=const andr = const. Then the equations of av-

f(z,t)=const. It means that if the Fokker-Planck equation, erage particle motion across the magnetic field lines take the
canonical Hamiltonian forrfi*~46

i/;=(2wc/e)a%H, a,=—(2mcle)a H. (6)

d(X)

V'=D’"-d,/log 2x')

[?tF(Z!t):az'[D(Z)'&ZF_V(Z)F]a (3)

for the coarse-grainedaverageyl distribution function o
F(zt), is a valid representation of the turbulent transport, it "€ 5 Hamiltonian H=H(u.Jd, ey ,t) =(e(X,1)
must also have a spatially uniform solution, and hence thé" mu{/2+ uB(X)) is the bounce-average particle energy ex-
compressible part of the average veloditymust be zero. pr_essed via the adl_abath invarianisand J as parameters,
This line of reasoning has long been known in the phys< S the speed of lighte is the charge, and(x.t) is the
ics of the Earth’s magnetosphere and Van Allen radiatiorf!€ctrostatic potential. _
belts35-38 where canonical action-angle variables form the N @ two dimensional geometry witB=B,(x,y) and
natural basis for the description of turbulent diffusion. In the®= #(X,y,t), the guiding-center diffusion in they(a,)
fusion literature, the quasi-linear diffusion in the action spacd’/ane leads to the uniform Clebsch-space —density
was also studie® 4 but not connected with the pinch ef- f(#,a,)=const, corresponding to the volume density
fect. A notable exception is Refs. 42 and 32, where a fusiod =T (Y) = f(ih,a )| 0(¢, ) 3(x.y)] =« B(xy). Anumeri-
reactor based on a dipole magnetic field was proposed with 6! test of this turbulent equipartition was presented in Ref.
specific emphasis on the strongly inhomogeneous densit§1/7' !n this geometry, collisions do not alter the final density
profile, n(x) « R4, and the direct analogy with magneto- profile, alth_ough they do affect the temperature pr(?ﬁlg.
sphere was pointed out. The same analogy motivated the |N€re is a straightforward analogy between this two

“negative heat conductivity” suggested by Kadomts&, dimensional pinch effect and the “dynamic frictiof®

The standard drift representation of the particle motionf®" the stochastic field lines in the magnetic field

in the Earth’s magnetic field is in terms of the action-angles’:B(X'y)ZJFV,gA(X'y'Z)(Z’ whgre.ﬁA IS a_small_perturba—

variablesz= (u,a,, ,J,;, i, ) Where,uzmvf/(ZB) is  tion. The equation of a magnetic field line is equivalent to the
Ll 7R 3y il Ir] 1

the magnetic momerithe action of the gyro motiona, is ~ =XB drift equation, wheresA plays the role of¢ and z

the gyro angleJ=¢mudl; is the parallel bounce action, stands for time. The partlcle'densmym tthgB p'roblem .
a; is the corresponding bounce anglg,is the (poloida) _then translates m_to the density of magnetic field lines, which
magnetic flux through the closed drift surface swept by thdS cléarly proportional ta(x.y).

bouncing particle, andv, is the correspondindtoroidal

angle. Without external perturbations, the actipnsJ, and  lll. ELECTRON DRIFT KINETICS IN TOROIDAL

 are constant, and the corresponding angles are linearGfEOMETRY

changing with the cyclic frequencies,> w,>w,, (the cy- The action-angle variables described in Sec. Il equally

clotron, the longitudinal bounce, and the toroidal orbit Pre-apply to an arbitrary magnetic fiel8=V xA possessing
cession frequency, respectivelyf an external perturbation g, surfacesy/= const:

to the particle Hamiltonian is present, some of the actions are
no longer conserved, depending on the characteristic fre- 5 _ VxxVO-VyxVe Vie—q(y)0]1xVy
guency of the perturbation. Only those actions, whose corre- 2 2 '

@)
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Here ¢ is the poloidal magnetic flux between the surface and ® me\ 2R (R\Y?qR
the magnetic axisy(¢) is the toroidal flux within the sur- w—be:< ) L_n< ) L—nkaPi, (10
face,q=dy/d¢ is the safety factorg and¢ are respectively

the poloidal and the toroidal2-periodic angle coordinates. which can vary from 1/3 to 1/50. For ions/w,;=1, and
(Do not confuse the toroidal angle with the electrostatic bounce averaging makes no sense.

potential denoted byg.) In the case of axisymmetry, Using the inequalitiesy,> w,v., Wherew, is the col-
d,=0, ¢ is simply the azimuthal angle. The Jacobianlision frequency, we can write the following bounce-average

\/§= |V¢//xV¢9-V<p|*l=qR/(27rB¢) of the magnetic flux kinetic equation for the electrons:

coordinate¥ (i,0,¢) defines the connection length XTI D= (2mc/e) H( . 0 f
L(y,6)=2mB+g=qRBB, entering the magnetic field line sy D= Ak, gy, 0).1]
length elementl/|=Ld#. HereR(y,6) is the local major +C(f). (11

radius andB,, (¢, 0) = (q/27)V ¢yx V ¢ the toroidal magnetic Here[a,b]=4(a,b)/d(y,a,) is the Poisson bracket arid

field. . T . .
: . is the bounce-average Hamiltonian including the fluctuation
For low-frequency potential fluctuationgy<<w,, the . . : .
. potential. The bounce averaging for a passing particle on an
parallel action Y . . X
irrational magnetic surfacq # m/n is essentially a flux-

m; r

w surface averaging. Thus neithgrnor f depend onv,, in the
J= é mde/”:J Ld0O(e—uB—ed) passing region)>J., and the fluctuation transport term in
o7 Eq. (11) is zero. The turbulent transport of passing particles
X \(M/2)(e— uB—eg), (8)  appears in the next order i/ wpe<1 (see Appendix B

The bounce-average collision operator can be written in
is adiabatically conserved for trapped particles but introthe particle-conserving form
duced, as a phase-space variable, for both trapped and pass- —
ing particles alike with the help of the step functi®n Here Clf(wd g ay)]=—al", i1=(m.d day),
e is total particle energy and the integration in ) is Ti——Digf+U'f, (12)
along the magnetic field linev,=const, =const. The ) ! _
bounce anglex;(#)) is defined by the standard condition where the diffusiorD" and the dynamic frictiod' are lin-
(3, a3)/d(mv,/|)=2m, and the toroidal precession angle ear integral operators dn®***The collisional fluxed"* and
a,=¢—(#6. If the potential fluctuations are small in ampli- I'? in the “velocity directions” drive the distribution function
tude, e¢<T, the fluctuating part of the potential to the flux-surface-local Maxwellian,
o= do() + d(¢h,0,0,t) can be neglected in the definition

of J which then becomes axisymmetric. In what follows, we ¢ = n(¥) _ A0
: : = ) ol 3 9) = 5 — ST 5y X , (13
will need some magnetic geometry characteristics associated (27m) (4) T(¥)

with J. The bounce-invariant pitch-angle variable can be in-j, ihe collisional time scale.= »-1. The densityn and the
it air— “12 6 H—(e— - e e -
troduced as eithgr=J(mu) " or.7=(e—e¢)/n, the lat- o heratureT are constant on the flux surfaces=const

ter one having the meaning of the maximum accessible magse .5 s the distribution function must be constant along the
netic field for the particle. The two variables are functions Ofparticle orbits shorter than the mean-free path.
one another : On the other hand, the radial flUx’ specifies the neo-
- classical transport, which relaxes the profiles of density and
L(¢,6)doO[.5—B(y,0)]V(.5—B)/2. temperature on a much longer, neoclassical confinement time
m scale. According to experimental datef. the review Ref.
©) 14), electron transport is at least by an order of magnitude

The dependence of4(j,) is completely defined by the 9reater than predicted by the neoclassical theory. Therefore,
magnetic geometry. Explicit formulae for a torus with ON€ can neglect the neoclassical radial flikin the colli-
r/R<1 are written in Appendix A. For givep and ¢, par- sion operatof12) in comparison with the Hamiltonian term
ticles with J<Jo(u,¥)=(mu) % (¢) are trapped, and in (11). N _ N
those withJ>J. are passing. If, in addition to the already assumed inequalities
Equation(7) implies thate,= ¢—q#, the toroidal angle Wpe> ©, Ve, the turby[ence correlation frequeneyis much
of the field line intersection with the mid-plane=0, and  higher than the collision frequenay., we can average the
o, the poloidal magnetic flux, are the Clebsch variables oKinetic equatlon(ll) over the turb_ulen_t fluctuations. Since
the magnetic field in an axisymmetric tokamak. Thereforehe turbulent drift(6) is incompressible in thei, a,) plane,
the bounce-average motion of a trapped particle is describe@ccording to Sec. I, this averaging amounts to introducing a
quency of the fluctuating fields is much less than the bouncéinetic equation,
frequency. For a generic drift-wave or ion-temperature- (I D=9 TD" w3 a. f1+C(f 14
gradient turbulence, the frequency is of order ()=, DT 3 9)dy £+ (D), 4
w=k,T/(eBL,), wherelL, is the radial scale of inhomoge- in which all properties of turbulence are concentrated in the
neity. The ratio of this frequency to the electron bounce fresingle turbulent diffusion coefficierid¥¥, which is only dif-
quencywp.=(r/R) ¥ 1¢/(qR) is ferent from zero in the trapped regidr<J (u,¥). (See Ap-

2=
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pendix B for a more accurate estimate DfY for passing whereQ;, is the usual, collisional energy exchange between
electrons. The opposite limitw,e> v.> w, is considered in  ions and electrons. The first-order solutiby{«,J, ¢,t) sat-
Appendix A. isfies

In addition to turbulence and collisions, particle and en-
ergy sources, when significant, must be included in the right- difo=0y[D"(1,3,)3yfol+ Clfo+1y). 17)
hand side of Eq(14). Here we do not consider the effect of The actual perturbatiofi, need not be calculated; for the
the sources. evolution ofn(,t) andT(,t) we only need two solubility

It is emphasized that, while the diffusion ovérwas  conditions obtained from Eq17) by integrating it overu
introduced on purely Hamiltonian grounds and on timeandJ with the weights of 1 and, respectively. Using the

scales much shorter than the collision time, the collision terngonservation lawg16), this results in the electron particle
in Eq. (14) can never be neglected, and, in a sense, it is th@nd energy balance equations:

main term in the kinetic equation. On the other hand, the

formally small turbulent diffusion term ir{14) cannot be INe=—3yle, (kS)
neglected either, because of the strong anisotropy of the _

phase space transport: collisions dominate the fluxes in the IWe= = yet Qe Qie- (19
“velocity directions” of u and J, whereas the turbulence Here, in order to emphasize conservation laws, we use the
determines the flux in the radiat direction, and this flux per-unit-flux electron densitNg(,t)=n(y,t) 7" () and
depends on the collisionally established distribution qver the analogously defined electron energy density

andJ. W= (3/2)N.T. The dimensions ofl';, g., and Q. are
If the collision operator is omitted, the formal steady- particles/s, ergs/s, and ergaib s), respectively.
state solution to Eq(14) is independent ofy, meaning the Equations(18) and (19) involve the following particle

constant per-unit-flux densityNg()=Jf(ux,J,4)dudd  and energy fluxes through the whole magnetic surface:
= const*? The usual Cartesian density in this turbulent equi-

pgrunon isn(y) o« 1/77 (), whereZ () is the volume in- Fe:_f deJD""”%fo, Qe=—f deJD‘W’E%fo-
side the flux surface,

(20)
77 ()= fﬁd/u/BEJ L(y,0)d6/IB(,6). (15 In addition to the classical ion-electron energy exchange
T Qie, Eq. (19 contains another source term,
The “specific volume” (15) plays a prominent role in the
MHD stability theory> o) :_f dudJ(9,e)D¥a,f
The restriction of they-diffusion to the trapped region te e o
only and the predominance of collisions drive plasma to ex=e—ed=uB(hj), 21)

more complicated profiles. In the next section we derive
electron transport equations by expanding in the smalinterpreted as the energy exchange between the turbulence
y-diffusion term in Eq.(14). and the electrons. It is due to the inevitable variation of the
particle kinetic energyy(w,J,¥) in course of displacement
in & under conservegd andJ. The fluxg, and the exchange
IV. ELECTRON TRANSPORT EQUATIONS IN term Q.. are defined up to a gauge leavirgd,ge+ Qe
TOROIDAL GEOMETRY unchanged. Equatiof21) uses the gauge in whidQ,. van-
) . ishes in a uniform magnetic field.
' In this section we apply'the Chgpman—Enskog perturba- Substitution of Eq.(13) into (20) and (21) yields the
tion procedure to the kinetic equatidd4) and derive the  jagireq expressions for the fluxes and the energy exchange.
electron particle and energy fluxes driven by the given lOWThese expressions can be made more explicit by writing the

frequency turbulence. o _ diffusivity D¥¥ as a function ofw, j, and ¢ and Taylor
As stated in Sec. lll, the collisional relaxation occurs O”expanding it in:

the collision time scale; that is, well before an electron is

significantly displaced in the radial direction. It means that *

the distribution functionf(u,J,) is locally Maxwellian, DW(M'J'JP)ZIZO Di(j, )N, (22
and the locality refers to flux surfaces. The local Maxwellian -

(13) contains two arbitrary functions af: the densityn and ~ Then we can writedudJ=(um)¥?dudj and the integrals
the temperaturd. The slow evolution of these functions is over u are solved explicitly. This gives the following:
determined by the turbulent diffusivitp *¥. Formally, one

seeks solution of Eq14) by successive approximations in Te “ 2+ (=Ddj [ T\
the smallD¥”. The zeroth-order solutiofL3) follows from Oe | =— — f . 3/2(7) nT
C(fo)=0. Since we neglect the neoclassical payf”, of O <o JB(2ni Jo A 7T nT A%
the bounce-average electron collision operator, it conserves
particles and energy locally: . | T I+3/2 P

| Dl | =——[1+52| 2| 23
f C(f)dJdu=0, j (3, )C(HdIdu=Qec, (16 A N
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where the prime denotes differentiation with respect/to  explain the “cold pulse” experimeftin which a negative
We see that the fluxds, andq, contain the usual terms with electron temperature perturbation reverses sign during in-
the density and the temperature gradients and also the pinetard propagation. The mechanism of this effect must depend
term with 9,,%(j, ) arising from the inhomogeneity of the on the nondiffusive processesd a nonlinear change in the
magnetic field. turbulent transport coefficients.

The expansion(22) is motivated by the possibly weak The energy of the turbulent fields themselves is negli-
dependence dd¥¥ on u at the fixed pitch anglg and radius  gible in comparison with the thermal energy of particles, and
. The reason is thap defines the extent of the particle if electrons release some energy to the turbulence at some
bounce motion, wheregs determines how fast this motion radius ¢, the same energy is returned by the turbulence to
occurs. This does not affect the bounce-average fluctuatioparticles(electrons or ionsat the same or some other radius
Hamiltonian Hq(j, #,a,,t), but u enters the unperturbed ¢. Although wave energy transfer mechanisms are
HamiltonianHy=edo() + 1. %(j, ) (Where ¢, is the po-  possible* the predominantly negative, for the decreasing
tential of the radial electric fie)dand affects the rate of the electron pressurép./dr<0, value of Q.. implies a local
toroidal  precession w,= —(2mc/e)d,Ho=qc(—edpy/ anomalous electron-ion energy exchange. This turbulence-
dr+ uB/R)/(eBr). The toroidal drift resonance condition enhanced electron-ion energy exchange channel has not been
o=k, Rw, then leads to a-dependent turbulent diffusivity previously taken into account in power-balance analyses.
D% |n as much as the quasi-linear thetrapplies and the This electron energy loss mechanism could affect the nondi-
u-dependence of the toroidal precession is significant. As thenensional transport scalimjsinferred from the power bal-
plasma potentiad is typically of order the temperature, the ance with a classical energy exchange. The sign of the effect
dependence ab,, on w is proportional tar/R and, for a thin  also helps to alleviate the existing difficulties with the expla-
torus, can be neglected. nation of the electron energy losses by fluctuation

Thus, depending on the properties of turbulence and, iransport® Normalizing to unit volume and neglecting the
particular, in a thin torus, the dependenceddf(u,j,) on  second term in Eq26), the electron energy exchange power
u can be weak, and in the serig®?) only theDy term may Q.= Qi./7" (¢) can be written
be retained. In this case, Eq23) are simplified as follows:

dpe
.dn . Qe=—Veg, (30
Fez—Dd—+Vn, (24
4 where V<0 is the measured in m/s local electron pinch
3.d(nT) 5. velocity, and a negativ€. means energy transfer from the
9e=—5D v +5VnT, (25 electrons to the ions.
~d(nT) -
Qie=—V——-+UnT, (26)
dy V. CANONICAL PROFILES
where In this section we investigate the density and tempera-
D ()= (118 ‘D (i 7302 ture profiles in the absence of particle and energy fluxes.
D()=(1/V8) | diDolj,4)- 7 "4, ¥), (27 These relaxed profiles play the role of canonical profiles in
the sense that the tokamak plasma tends to relax to these
(/( w):(3/2\/§)J dJ'Do-/?_S/Z%—%’, (28) profilgs when the par.ticle and energy sources are insignifi-
cant in comparison with the turbulent transport.

A The steady-state solution to Eq48) and (19), neglect-
U(¢):(15/4\/§)J djDo.s "(9,%)% (29)  ing the collisional energy exchangg., defines the relaxed
profiles of the densityny(#/) and the electron pressure
The integration iN27)—(29) extends over the trapped region py()=nq(#) To(4) as follows(prime denotesl/d):
0<j<j., where the diffusivityDy # O. L~ -
In the approximation of the weak dependence of the dif- (logno)” =V(#)/D(4),
fusivity D¥¥(uw,j,) on the trapped particle energyia 3 AR I 4 (] 5N\ —
w), the particle flux24) has no cross term with the tempera- 2(DPo)’ = 2VPo* (U= 2V1)Po=0. 3D
ture gradient, because the toroidal drift resonance is primaEquations(31), as(24)—(26), relying on the zeroth-order ex-
rily determined by the radial electric field. The cross termpansion(22), are only valid for a thin torus with/R<1 and
appears in higher orders of the expansi@3). In a thin  can be further simplified. The transport coefficiebts V,
torus,V = r/R andU « (r/R)2. As shown in Sec. V, the pinch and U are determined by trapped particles only. In the
veIocnyV is usually negativeinward). trapped regionj<j., we haveB () <Z(], ) <Bna¥),
The energy exchange ter@6) in Eq. (19) appears as a and thus the derivative,, 7~ (r/R)B/¢ is small. So is the
local source term. If, however, we wish to include it into the pinch term in(24), and the relaxed density profile in this
divergence of the heat flug,, the flux will change by the approximation is only weakly inhomogeneous:
non-locally defined quantitysq.= —fg"Qtedz,//. Thus the
turbulence-particle energy exchange results in certain nonlo- No( %) =no(0)| 1+ f dwﬂ o)
cal features. This kind of nonlocality alone is insufficient to D(y)

r2

=2 (32
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Here the integral term i©(r/R). Similarly, the second equa- ation. The pinch effect alone renders the usual transport

tion (32) yields matrix nonexisterif or at least prompts including new “ther-
c \A/( " 5 modynamic forces” such a¥B.
v r Although ions do not conserve their longitudinal invari-
=po(0)| 1+ 5| dgp=—"-+0|=3]]|. 33
Po(#)=Po(0) 3j lpD(dz) (RZH 33 antJ, it does not mean the absence of the anomalous pinch

L 53 s effect for the ions: The conservation gf alone induces an
The resulting “adiabatic” profilepo(#) = ng () isthe prop-  inyariant measure with the density proportional to the mag-
erty of the expansion tO(r/R); it does not follow from the - netic field. In a thin torus, this is ad(r/R) effect, just as the
underlying kinetic equatiofil4). collisional pinch effect for electrons. The ion pinch effect
In general, the relaxed profiles ab andpo depend on ¢4 pe formally described by an action-diffusion equation in
both the magnetic geometry and the distribution of turbusyhich only 4-components of the diffusion tensor are zero. In
lence viaDo(j, ). To obtain more explicit canonical pro- oy event, the effects of the magnetic geometry on local
files, we make another, uncontrollable approximation transport and the profile formation have to be taken into
wherebyDo(j,#) = O[jc(4) ~]1Do(¥); thatis, theys diffu-  5c0qunt in some form. An interesting problem regarding spe-

sion of trapped electrons is independent of the trappingificaily jons is the momentum transport, because of the

depth. This would be the case if the parallel turbulence cor-Strong back reaction of plasma rotation on turbuleiica.

relation length were much larger than the connection IengtI:|-here is experimental evidence of the pinch effect for the
L (the standard assumption is that the two length are of thﬁwomentum transpoft

same orderdThr(]en the ?rZitrarydamplitutho(w) cancels in Itis always necessary to remember the limitations intrin-
Eq. (32), and the result depends on the magnetic geomet_r)o(ic to the test-particle approach, which we used so far. By

only. In the case of circular magnetic surfaces the result '?)rescribing turbulence in terms of action diffusion coeffi-

(see Appendix i cients, for example, we can easily run into the trouble of
4 (v (dlogq 3 r2 violating the quasi-neutrality of plasma with few impurities.
no(r)=n0(0){1— 3_RJ dr(w+ §) +O( ” This could not be a problem for energy transport, but, in the
0 analysis of the particle transport, the quasi-neutrality con-
straint should be built into microscopic field equations long
The corresponding pressure profile is similar and involvedefore any averaging and diffusion approximation are en-
the coefficient of 20/9 in place of the 4/3 in E@4). deavored. Of course, each plasma particle, electron or ion,
does move in the turbulent fields, whatever they are, and the
resulting diffusion or diffusion-convection description is
equally appropriate for both electrons and ions. On the level
of averaged description, it is the relation between the various
Our analysis was focused primarily on electrons fortransport coefficients, which enforce®r reflects self-
which the effect of typical turbulent fluctuations was identi- consistency and, particularly, quasi-neutrality.
fied in terms of the trapped electron diffusion over the poloi-  In this connection, it is appropriate to ask as to which
dal flux coordinateyy. We stressed that it does matter in plasma species, if any, is more amenable to the test-particle
which coordinate the pure diffusion of particles takes placeanalysis. The simple answer is that both electrons and ions
the nonlinear relation betweenr (in which the bounce- are correctly described by averaged transport equations, such
average turbulent diffusion is pyrand the radius means as(4), correctly derivedfrom the underlying single-particle
an average radial pinch velocity. Thus the observed conveddamiltonian dynamics and supplied with an appropriate col-
tive fluxes in tokamaks have firm theoretical grounds inlision operator. The more complex answer is that one never
terms of the conservation of adiabatic invariants during theknows the properties of turbulence from pure theory and
chaotic particle motion and the Liouville theorem constraintstherefore makes various approximations to obtain estimates
acting on turbulent time scales, so far as collisions are igof the transport coefficients. The applicability of the test-
nored. Taking collisions into account is possible in a regulaiparticle approach must be then defined as the reliability of
fashion, and the result is a set of transport equati¢t®, simple  decorrelation-based estimates, such as
and (19), involving anomalous, both diffusive and convec- D¥/~(#?)/w, and the like.
tive, particle and energy fluxes, and an anomalous electron- In our opinion, electrons are better suited for the test-
ion energy exchangeegs. (23) or (24)—(26)]. particle analysis for the following reasons. First and most of
The transport coefficients depend on the parameters dll, the fast parallel motion and the associated adiabatic in-
turbulence, which is self-consistently related to plasma fuelvariantsu andJ make the electron dynamics, while chaotic
ing and profiles; however, the structure of the electron transand complex, effectively less multidimensional and simpler
port equations is important in its own right even when thethan the ion dynamics. The bounce-average drift of trapped
turbulence part of the theory is missing. A notable feature oklectrons is two dimensionalyf«,) and the transport-
this structure is the absence of any conspicuous Onsagetlevant Fokker-Planck description is one dimensiongl.
symmetry?”®® Even though the distribution function is very The corresponding dimensions for the ions are four and two.
close to Maxwellian, the usual entropy-based arguments b&n the one hand, the parallel ion motion is strongly coupled
hind the Onsager symmetry fail because of the predomito the cross-field transport and, on the other, the existence of
nantly turbulent mechanisms of the plasma profiles relaxthe whole phase-space diffusion matrix in thg,J) plane

R?
(34

VI. DISCUSSION
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and the electrons. This is also true in the toroidal geometry.
Recalculated for the minor radius the quasi-linear estimate
of the ion diffusivity isDi~(c~E9/B¢)2/w, whereas the elec-
tron diffusivity, Do~ (r/R)*%(cE,/B,)%/w, is proportional
to the fraction ¢/R)Y? of trapped particles subject to the In the limit of a thin torus with circular flux surfaces,
average drith(6), o['r=—0~E¢,/Bg. As the parallel electric r<R=const, we have

APPENDIX A: LARGE-ASPECT-RATIO LIMIT

fjeld EH=(~E(,B,,+ E,B,)/B is usually small, we have rcosd By

E,/B,=—E,/B,, and soD;/D~(R/r)"? turns out large B=Bo(1— T) q(r)= RB(1)’

in a thin torus. One possibility is that the intrinsic correla- (A1)
tions between the parallel ion motion and the turbulent fluc- rordr

tuations make the ion diffusivity much smaller than the lﬂ(r):ZWBOL W Ln=a(R,

simple quasilinear estimate would predi¢this is the only
option for the case of a uniform magnetic figldnother
possibility of enforcing the quasi-neutrality lies in the pinch

and 6 is the geometrical poloidal angle around the magnetic
axis. Then the pitch-angle variab(8) is

effect. The fact thab;>D,, can simply mean that the diffu- . o w» . 1 RZ-Bg

sive and the convective fluxes of the ions are in a fine bal- 1=1el(2), je=8a(BoRNT, - 2= §+ r 2B, '

ance yielding total particle flux much less thandn/dr. (A2)
This possibility also raises implications for the calculation of\ynere the functiorl is expressed through the complete el-

the radial electric field other than usifal. liptic integralsE andK:

This example, as all the preceding analysis, emphasizes
the role of convective—that is, independent of the density
and temperature gradients—fluxes in toroidal geometry, 2)= [ E(z)=(1-2)K(z), 0<z<1 (trapped,
These fluxes, or the pinch effect, shape the “canonical” pro- VzE(1/z), z>1 (passing.

files. These profiles depend on the properties of turbulencgowing Eq. (A2) for .#(j,4) vyields: .#=Bgy+By(r/R)
(itself driven by the gradientdbut, under certain approxima- x[2z(j/j.)—1], where the functiorg(l) is the inverse to
tions, are determined by the magnetic geometry only. UpoRA3). In the trapped regiofp<j. we havez(l)<1 and thus
accepting the inhomogeneous canonical profiles as a new(j,) is a week function of radius:

frame of reference, the particle and heat diffusivities are no o) B

longer the measure of losses but rather the measure of the 2727 _ =0

(A3)

[Zz(l)—l—ZIz’(l)(OI lqu+£”,

resilience of the canonical profiles to externally imposed or R dlogr 2

fluxes. Under this paradigm, the routinely used transport co- j

efficients, such ag;, are no longer crucial confinement pa- I= T (A4)
Cc

rameters. For example, one can safely get~ to merely

say that the ion temperature keeps its canonical profile, n§Pon substituting Eq(A4) into (28) and (32), result (34)
matter what plasma heating and energy flux there are. In thi@!lows. _ _ o
extreme limit, the crucial problem of determining the central € O(r/R) pinch effect obtained here for collisionless
temperature boils down to determining the canoncapro- electrostatic modes with, > w> v, remains also small for

file and attaching this profile to an appropriate boundary Conyery—low—frequency modes witlope> ve>w. I this limit,

. ) o the collisionless averaging over fluctuations cannot be done,
dition at the plasmg quzé’WhICh highlights the ro.Ie of the and one has to start with E(L1) instead of(14). The same
plasma edge physics in the global tokamak confinement.

. perturbation expansiori=fy,+f;+ ..., can baused in this
Both the energy pinch and the anomalous energy ex:

i k case; however, in order to infer the fluxes, one has to actually
change are important players in the power balance, and they|ye the first-order equation,

must be included in studies involving local power-balance

analysis, such as the nondimensiopatscaling studies®®* (2mele)[Hy(p,d, ¢ ay 1), fo] + Ca(f1) =0, (AS)

The specific predictions regarding the relation between theescribing the quasi-static collisional response of electrons,
diffusivity, the pinch velocity, and the exchange rate, such a$,, to the toroidally asymmetric potential perturbatibiy .
those in Eqs(24)—(26) and (27)—(29), could be useful in This amounts to the inversion of the linearized collision op-
such analyses. eratorC4(f,):
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fl(,u,\],w,%,t)z(27rc/e)C1‘1 For  the model spectrum | p,=(27) Y 1p
X oniexpo?2w?,), Eq.(B2) takes the form
X[Da,Ha(m,d ey )y fo(p,d, ) 1.

(A6) CH(1)=(2m0) 2 Nl @l ™HIOUD et 2 ()
mn

The Maxwellianf, depends on the magnetic geometry only gq passing particlei(t) is the ballistic motionw,,t plus a
via .7(j, ), a weak function ot in the trapped region, S0 harigdic oscillation due to the velocity change in the mag-
the pinch term in the flux due to the perturbatinis again  atic well; the simplest model i8(t) = wpt+ 8,SiN(@yd).
O(r/R). The cross fluxe$I" due toT'(¢) and g, due to Then, expandinge (M "D 3:sneed) =1 1i(m-+na) 5,sin(wpd),

n’(4)] are generally not small. we calculate the diffusivityB1):

D= \2m(2mc)2>, n?l
mn

e—(m-%—nq)2/2vﬁm

APPENDIX B: TRANSPORT OF PASSING ELECTRONS

Each adiabatic invariant=¢[ mv+ (e/c)A]-dl involves m(ef(mr1t4+ 12205,
the magnetic flux through the relevant nearly closed particle 2
orbit. A natural extension of the adiabatic invariance to pass-
ing particles can be attempted for a rational magnetic sur- —e‘<m+”q‘1)2’2”fnn)}. (B4)

face,q(¥)=dy/d¢=m/n, where the magnetic field line is
closed uponn poloidal and m toroidal revolutions: Here the small parametef,,= wmn/wpe<<1 is responsible
I ()= (elc)[nx(y)—my]. The conservation df(y) seems for selecting the resonant modes witm+ng=I|<wvg,,
to imply = const, that is, no turbulent transport of passingwhere the definition of the resonant modes is generalized to
electrons?® In this simple form, however, this argument is account for the periodic change in the particle parallel veloc-
not definitive, because the change lofn response to an ity. For the purpose of estimate, thet 0 terms in(B4) can
attempted radial displacement is smalitl/dy=(e/c) be ignored. The number ofn(,n) modes selected by the
X(ng—m)=0, by our definition ofg. We thus expect that requirement of the parallel resonance is determined by the
the radial transport of passing particles, even for low-probability fornq to be within av,,-vicinity of an integer.
frequency fluctuations, can be finite, and an estimate of thés discussed above, the probability is of ordgf,<1. Thus
effect is needed. the sum(44) is estimated as

The transport will arise when the resonance condition
w=Kkjv| is satisfied for a non-exponentially weak part of the  D#/=\2m(27¢)?Y, n?lwmn=(27CRE,)% wpe.
fluctuation spectrum. Here the parallel wavenumber mn
kj=k-b=(m+nqg)/L. The standard assumption that (BS)
kiL~1 implies the fluctuation spectrum lying within the A similar estimate for trapped particles involves the turbu-
strip [m+ng|=<1 on the (m,n) plane. The resonance takes lence correlation timev in place ofwy,.
place for the subset of modes witm+ ng| =< w/ w,e~ 1/10. Thus the transport of passing electrons can be neglected
As the typical fluctuation harmonics in tokamaks are high,in comparison with trapped electronsaf w,<(r/R)Y2 In
|m|~|n|g~30—50, the resonant modes are not improbablethis case, the particles get collisionally trapped and undergo a
For an irrational g and large n, the quantity fastery-diffusion well before the slow passing transport ac-
A,=min,/m+ng, the distance fronmq to the nearest inte- cumulates an appreciable effect.
ger, is a version of the standard computer random-number
generator with the uniform distribution if0,1/2]. Given
n>1 trials, the minimumA,, is of order 1h, which is less 1Jc'oﬁé ftga%h;f; NJ ﬁ;‘g, SE-S“ﬁ;g;at"écs-cvﬁ;n%?”gia?{ aB:g% f/o?s
than w/wye. Thus there do exist a fewn(n) fluctuation g FosionZa, 11451983, v - el V0SS,
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