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Anomalous pinch effect and energy exchange in tokamaks *
M. B. Isichenko,†,a) A. V. Gruzinov, P. H. Diamond, and P. N. Yushmanov
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319

~Received 7 November 1995; accepted 5 December 1995!

It is shown that, under very generic assumptions of the nature of plasma turbulence in an
inhomogeneous magnetic field, the anomalous particle and energy fluxes, in addition to usual
diffusive terms, involve purely convective terms not directly associated with density or temperature
gradients. The anomalous convective transport results from the conservation, on turbulent time
scale, of adiabatic invariants of particle motion in the inhomogeneous magnetic field and the
Liouville-theorem constraint on the microscopic dynamics, thus furnishing the mechanism of the
anomalous pinch effect in tokamaks. This theory also predicts an electron-turbulence energy
exchange, which can be interpreted as a turbulent enhancement of the electron-ion energy exchange.
Collisions introduce important modifications to the turbulent mechanisms of the pinch effect. It is
argued that the nondiffusive effects are intrinsic to tokamak transport and should be included in
power-balance analyses. ©1996 American Institute of Physics.@S1070-664X~96!90505-4#

I. INTRODUCTION

The tokamak energy confinement, clearly one of the
most important reactor characteristics, is routinely measured
by the heat diffusivityx relating the thermal fluxq to the
temperature gradient¹T as q52(3n/2)x¹T. It is not as
clear, however, whether the transport in tokamaks is of pure
diffusive nature and whetherx is the most relevant transport
characteristic. Indeed, there exists a body of experimental
evidence that the heat fluxq involves a significant inward
convective component1–5 and even bears certain nonlocal
features6–8 not easily reducible to combined diffusive and
convective fluxes.

The phenomenon of profile consistency, or resilience9

observed for plasma temperature,3,10,11 density,1,12,13 or
pressure4 has been known for a long time, yet the underlying
particle and energy pinch effects have been much less stud-
ied than the particle and thermal diffusivities. For the one
thing, this has been due to the lack of a clear physical expla-
nation of the turbulent, or anomalous pinch effect. Also, the
experimental measurements of off-diagonal terms of the
transport matrix and the convective fluxes are much more
complicated, especially for the energy transport, where the
pinch effect is often obscured by a substantial energy source
at the plasma center. Still, the typically peaked tokamak den-
sity profiles in the absence of significant particle sources at
the center indicate a significant particle pinch.14

In our terminology, the pinch effect stands for particle
and energy fluxes not directly associated with either density
or temperature gradients. The usual off-diagonal~cross!
fluxes appear in the neoclassical theory~cf. Ref. 15!, which
also predicts an inward pinch velocity proportional to the
toroidal loop voltage.16,17 This neoclassical pinch effect is
typically too weak to explain the experiment, but it can be
made stronger by phenomenologically introducing an en-
hanced electron-electron collision frequency.18–20

Turbulent mechanisms of the pinch effect are not neces-

sarily related to the inductive loop voltage. Several quasilin-
ear theories reported various pinch terms in the anomalous
fluxes.21–24The pinch terms were also present in the bounce-
average equations of Ref. 25, although dropped in the final
results.

Smolyakovet al.26 highlighted the role of the Liouville
theorem which precludes quasilinear convective fluxes in the
canonical phase space (x,v), and pointed out that such fluxes
can appear upon the projection onto the coordinate spacex.
More recently, an important clarification of the physics of the
anomalous pinch effect in tokamaks was made by
Yankov27,28 and Nycander and Yankov,29,30 who proposed
that turbulent plasma in the absence of particle and energy
sources assumes a state close to the so-calledturbulent eq-
uipartition. This state corresponds to a phase-space density
uniform on the surfaces of the two constant adiabatic invari-
antsm5mv'

2 /(2B) and J5rmv idl i , a version of the er-
godic hypothesis where the adiabatic invariants play the role
of the no longer conserved energy. The applicability of the
statistical mechanics to self-consistent plasma turbulence is
not clear, but some predictions of this approach are in a
qualitative agreement with experiments. In the state of tur-
bulent equipartition, the plasma density and temperature are
inhomogeneous, and there are no particle or energy fluxes.
Such a state is usually marginally stable to the modes poten-
tially responsible for driving the plasma to this state.28,30–32

When applied to collisionless toroidal plasma with a large
aspect ratioR/r@1, the turbulent equipartition corresponds
to the distribution function

f ~x,J,m!5 f 0~J,m!/q~r !, ~1!

where f (x,J,m) is the particle density with the given adia-
batic invariants,q(r )5rBw /(RBu) is the safety factor,Bw

andBu are the toroidal and the poloidal magnetic fields, and
r andR are the minor and the major radii, respectively. Here
and in what follows, we adopt a uniform convention
whereby f denotes the particle density in the phase space
specified byf ’s arguments~except time!. The tokamak safety
factor profile,q(r ), is typically an increasing function of the
minor radius, and the density~1! is peaked toward the center,
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thus constituting the collisionless pinch effect of Yankov.
Equation~1! describes the distribution of trapped particles
subject to radial drifts in low-frequency electrostatic modes,
whereas passing particles effectively average out the effect
of turbulence and eventually come to a collisional equilib-
rium with the inhomogeneously distributed trapped particles.

The conjecture27,28 that the profile of the total density
n(r ) will essentially follow the turbulent equipartition~1!,
namely n(r )q(r )5const, was questioned in the previous
letter,33 where collisions were taken into account and the
peakedness of the plasma density, in a thin torus with
r /R!1, was found to beO(r /R). The reason lies in a can-
cellation characteristic of the thin torus limit and, in the sim-
plest terms, is as follows. The integration of Eq.~1! over J
} v iL involves the factor of the connection lengthL5qR,
and the strong radial dependence viaq(r ) drops out of the
particle densityn5* f (x,J,m)dJdm. Put differently, an iso-
tropic Maxwellian with constant density and temperature re-
writes in the (x,J,m) coordinates exactly as Eq.~1! in the
trapped region forr /R!1. It is not evena priori evident that
taking into account higher-order corrections will result in an
inward pinch. Under some simplifying assumptions made in
Ref. 33, the convection was found inward for
d log q/d log r.23/8.

In this paper, without restriction to particular turbulent
modes, we discuss the physics of the anomalous pinch effect
in a magnetically axisymmetric tokamak. The microscopic
dynamics of particles in the turbulent fields is Hamiltonian,
which imposes certain constraints on the dynamics even
without knowing the details of the turbulence. The most fun-
damental constraint is the Liouville theorem, which predicts
a pure particle diffusion in the action space upon introducing
suitable action-angle variables. Under additional constraints,
such as the conservation of the first adiabatic invariantm ~for
turbulent frequencyv much less than the gyro frequency
vc) and the second invariantJ ~for v much less than the
parallel bounce frequencyvb), the pure diffusion along the
third action translates into both a diffusivity and an average
pinch velocity in the coordinate space. The pinch velocity
arises as a result of the magnetic field inhomogeneity, as if
the gradient ofB were a ‘‘thermodynamic force,’’ due to the
coordinate-dependent constraints of the adiabatic invariance.
The formalism of the action-space diffusion predicts colli-
sionless turbulent equipartitions in agreement with Refs. 27
and 29 and also allows to include collisions in the transport
analysis.

We address both particle and energy transport, with a
specific emphasis on electrons for which the theory’s small
parameters, such asv/vbe , are better justified and for which
more anomalies are observed experimentally. The source of
plasma turbulence is not discussed, and the transport is stud-
ied for the given, under fairly generic assumptions, electro-
static fluctuations. Of course, the test-particle approach lacks
the self-consistent dynamics of turbulence; therefore, only
those transport features, which are not too sensitive to the
assumptions of the turbulence spectrum, are valuable predic-
tions of this theory. The anomalous particle and energy pinch
effects and the anomalous energy exchange are among these
features.

The paper is organized as follows. In Sec. II the role of
canonical coordinates is discussed in the context of turbulent
diffusion. In Sec. III toroidal magnetic flux coordinates are
used to represent the bounce averaged turbulent drifts of
trapped electrons in a Hamiltonian form and to formulate the
kinetic response of collisional electrons to a low-frequency
electrostatic turbulence. In Sec. IV the kinetic equation is
solved using the large parameternetE@1, wherene is the
electron collision frequency andtE is the confinement time,
and electron transport equations are obtained for the regime
vbe@v@ne . The ‘‘canonical’’ profiles corresponding to the
absence of particle and energy fluxes are discussed in Sec. V.
In Sec. VI we discuss implications and possible extensions of
our results. Several auxiliary calculations are organized in
appendices. In Appendix A, we summarize the large-aspect-
ratio tokamak limit of the arbitrary toroidal geometry used
throughout most of the paper. Here we also consider the
regime of very low-frequency modes,vbe@ne@v, in which
the pinch effect is alsoO(r /R). In Appendix B, the transport
of passing particles by low-frequency turbulence is studied.

II. THE ROLE OF CANONICAL COORDINATES IN
TURBULENT DIFFUSION

Turbulent transport is caused by the random walk of par-
ticles in randomly fluctuating fields. Pure diffusion is an un-
biased random walk of a particle with no average displace-
ment, ^x&50, and with a linearly growing mean square
displacement̂x2&52Dt, D being the diffusivity. The intui-
tive motivation behind the diffusion approximation is that
zero-average fluctuating fields imply a zero-average velocity.
However, the well-known example of the ponderomotive
force ~cf. Ref. 34! says that the zero-average, at a givenx,
accelerationẍ5a(x,t) implies an average force, if the enve-
lope of the HF fielda is inhomogeneous. Even more trans-
parently, the pure-diffusion approximation fails for the first-
order ~drift-type! equationẋ5v(x,t) with the zero-average,
at fixedx, velocity v, because the pure diffusion cannot be
independent of the coordinates used to track down the par-
ticle position. Indeed, if, in some coordinatex, the particle is
executing an unbiased random walk with the diffusivityD,
in another coordinate, sayx85x2, the particle has a nonzero
average velocity:̂x8&52Dt.

It is the transition from single-particle dynamics to an
average Fokker-Planck description, where the average
~pinch! velocity does or does not appear. Below we show
that there is no average velocity in the canonical action vari-
ables, but, before doing so, consider what happens to a dif-
fusion equation when variables are changed. Suppose there is
no average particle velocity in some coordinatesx:
] tn5]x•(D•]xn), where n is the particle density in the
x space.~In order to have the terms in the Fokker-Planck
equation simply related to the particle motion, the
density must be thus defined.! Upon the change of the
variables, x→x8(x), and introducing the x8-density
n8(x8,t) 5 n(x,t)u](x)/](x8)u, we obtain the transport equa-
tion with a convection term:

] tn85]x8•~D8•]x8n82V8n8!, D8 i j5Dkl
]x8 i

]xk
]x8 j

]xl
,
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V85D8•]x8logU ]~x!

]~x8!
U. ~2!

Thus, a nonlinear change of coordinates renders pure
diffusion biased; that is, with an average velocity in the new
coordinates. Obversely, an existing bias can be removed by
changing to another, ‘‘natural’’ set of coordinates in which
there is no convective particle flux. Generally speaking, how
do we know that Cartesian coordinates, or the tokamak mi-
nor radiusr , are such natural coordinates for the purpose of
anomalous plasma transport? In fact, the observed pinch ef-
fect suggests that Cartesian spatial coordinates are not, and
below we show that the poloidal magnetic fluxc(r ) is the
natural radial coordinate in which, without collisions,
trapped electrons diffuse purely and tend to distribute homo-
geneously, with the per-unit-flux densityNe(c)
}n(r )q(r )5const.

In general, if the particle motion is Hamiltonian and sto-
chastic, the canonical coordinatesz5(p,q) furnish the natu-
ral coordinates in the above sense. This is due to the Liou-
ville theorem which says that the phase-space velocity,
ż5u(z,t), is incompressible,]z•u50, and therefore the con-
tinuity equation for the distribution functionf (z,t),
] t f1]z•( fu)50, has the exact phase-space-uniform solution
f (z,t)5const. It means that if the Fokker-Planck equation,

] tF~z,t !5]z•@D~z!•]zF2V~z!F#, ~3!

for the coarse-grained~averaged! distribution function
F(z,t), is a valid representation of the turbulent transport, it
must also have a spatially uniform solution, and hence the
compressible part of the average velocityV must be zero.

This line of reasoning has long been known in the phys-
ics of the Earth’s magnetosphere and Van Allen radiation
belts,35–38 where canonical action-angle variables form the
natural basis for the description of turbulent diffusion. In the
fusion literature, the quasi-linear diffusion in the action space
was also studied,39–41 but not connected with the pinch ef-
fect. A notable exception is Refs. 42 and 32, where a fusion
reactor based on a dipole magnetic field was proposed with a
specific emphasis on the strongly inhomogeneous density
profile, n(x) } R24, and the direct analogy with magneto-
sphere was pointed out. The same analogy motivated the
‘‘negative heat conductivity’’ suggested by Kadomtsev.43

The standard drift representation of the particle motion
in the Earth’s magnetic field is in terms of the action-angle
variablesz5(m,am ,J,aJ ,c,ac), wherem5mv'

2 /(2B) is
the magnetic moment~the action of the gyro motion!, am is
the gyro angle,J5rmv idl i is the parallel bounce action,
aJ is the corresponding bounce angle,c is the ~poloidal!
magnetic flux through the closed drift surface swept by the
bouncing particle, andac is the corresponding~toroidal!
angle. Without external perturbations, the actionsm, J, and
c are constant, and the corresponding angles are linearly
changing with the cyclic frequenciesvc@vb@vw ~the cy-
clotron, the longitudinal bounce, and the toroidal orbit pre-
cession frequency, respectively!. If an external perturbation
to the particle Hamiltonian is present, some of the actions are
no longer conserved, depending on the characteristic fre-
quency of the perturbation. Only those actions, whose corre-

sponding angular velocities are much greater than the pertur-
bation frequency v, remain conserved as adiabatic
invariants.44 For example, ifvc@vb@v*vw , the first two
adiabatic invariants,m and J, are conserved, and the third
invariant c is broken thus introducing radial diffusion of
bouncing particles. If we are not interested in the angular
coordinatesa i , the distribution function f (I ,a) ~where
I 1,2,35m,J,c) can be integrated over the anglesa, and Eq.
~3! becomes the action-diffusion equation:

] t f ~ I ,t !5] I i@D
i j ~ I !] I j f ~ I ,t !#. ~4!

The conservation ofI 15m and, possibly,I 25J means that
the components of the diffusion tensorDi j involving the cor-
responding indices are all zero.

Alternatively, forvb@v, the single-particle motion can
be averaged over the fast gyration and bouncing before in-
troducing the kinetic description. The bounce-average drift
of the guiding center can be written in the Hamiltonian form
using the Clebsch coordinatesac andc defined locally for a
general magnetic fieldB(x) by

B5“ac3“c/~2p!. ~5!

The magnetic field lines are given by the intersection of the
surfacesc5const andac5const. Then the equations of av-
erage particle motion across the magnetic field lines take the
canonical Hamiltonian form:44–46

ċ5~2pc/e!]ac
H, ȧc52~2pc/e!]cH. ~6!

The Hamiltonian H5H(m,J,c,ac ,t)5^ef(x,t)
1mv i

2/21mB(x)& is the bounce-average particle energy ex-
pressed via the adiabatic invariantsm and J as parameters,
c is the speed of light,e is the charge, andf(x,t) is the
electrostatic potential.

In a two dimensional geometry withB5Bz(x,y) and
f5f(x,y,t), the guiding-center diffusion in the (c,ac)
plane leads to the uniform Clebsch-space density
f (c,ac)5const, corresponding to the volume density
n[ f (x,y)5 f (c,ac)u](c,ac)/](x,y)u } B(x,y). A numeri-
cal test of this turbulent equipartition was presented in Ref.
47. In this geometry, collisions do not alter the final density
profile, although they do affect the temperature profile.28,48

There is a straightforward analogy between this two
dimensional pinch effect and the ‘‘dynamic friction’’49

for the stochastic field lines in the magnetic field
B5B(x,y) ẑ1“dA(x,y,z)3ẑ, wheredA is a small perturba-
tion. The equation of a magnetic field line is equivalent to the
E3B drift equation, wheredA plays the role off and z
stands for time. The particle densityn in theE3B problem
then translates into the density of magnetic field lines, which
is clearly proportional toB(x,y).

III. ELECTRON DRIFT KINETICS IN TOROIDAL
GEOMETRY

The action-angle variables described in Sec. II equally
apply to an arbitrary magnetic fieldB5“3A possessing
flux surfacesc5const:

B5
“x3“u2“c3“w

2p
5
“@w2q~c!u#3“c

2p
. ~7!
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Herec is the poloidal magnetic flux between the surface and
the magnetic axis,x(c) is the toroidal flux within the sur-
face,q5dx/dc is the safety factor,u andw are respectively
the poloidal and the toroidal 2p-periodic angle coordinates.
~Do not confuse the toroidal anglew with the electrostatic
potential denoted byf.) In the case of axisymmetry,
]w50, w is simply the azimuthal angle. The Jacobian
Ag5u“c3“u•“wu215qR/(2pBw) of the magnetic flux
coordinates50 (c,u,w) defines the connection length
L(c,u)52pBAg5qRB/Bw entering the magnetic field line
length elementdl i5Ldu. HereR(c,u) is the local major
radius andBw(c,u)5(q/2p)“c3“u the toroidal magnetic
field.

For low-frequency potential fluctuations,v!vb , the
parallel action

J5 R mv idl i5E
2p

p

LduQ~e2mB2ef!

3A~m/2!~e2mB2ef!, ~8!

is adiabatically conserved for trapped particles but intro-
duced, as a phase-space variable, for both trapped and pass-
ing particles alike with the help of the step functionQ. Here
e is total particle energy and the integration in Eq.~8! is
along the magnetic field lineac5const, c5const. The
bounce angleaJ(l i) is defined by the standard condition
](J,aJ)/](mv i ,l i)52p, and the toroidal precession angle
ac5w2qu. If the potential fluctuations are small in ampli-
tude, ef̃!T, the fluctuating part of the potential
f5f0(c)1f̃(c,u,w,t) can be neglected in the definition
of J which then becomes axisymmetric. In what follows, we
will need some magnetic geometry characteristics associated
with J. The bounce-invariant pitch-angle variable can be in-
troduced as eitherj5J(mm)21/2 orB5(e2ef)/m, the lat-
ter one having the meaning of the maximum accessible mag-
netic field for the particle. The two variables are functions of
one another :

j ~B,c!5E
2p

p

L~c,u!duQ@B2B~c,u!#A~B2B!/2.

~9!

The dependence ofB( j ,c) is completely defined by the
magnetic geometry. Explicit formulae for a torus with
r /R!1 are written in Appendix A. For givenm andc, par-
ticles with J,Jc(m,c)5(mm)1/2j c(c) are trapped, and
those withJ.Jc are passing.

Equation~7! implies thatac5w2qu, the toroidal angle
of the field line intersection with the mid-planeu50, and
c, the poloidal magnetic flux, are the Clebsch variables of
the magnetic field in an axisymmetric tokamak. Therefore,
the bounce-average motion of a trapped particle is described
by Eq. ~6!. The bounce averaging is appropriate if the fre-
quency of the fluctuating fields is much less than the bounce
frequency. For a generic drift-wave or ion-temperature-
gradient turbulence, the frequency is of order
v5kucT/(eBLn), whereLn is the radial scale of inhomoge-
neity. The ratio of this frequency to the electron bounce fre-
quencyvbe.(r /R)1/2vTe /(qR) is

v

vbe
.Sme

mi
D 1/2 RLn SRr D

1/2qR

Ln
kur i , ~10!

which can vary from 1/3 to 1/50. For ions,v/vbi*1, and
bounce averaging makes no sense.

Using the inequalitiesvbe@v,ne , wherene is the col-
lision frequency, we can write the following bounce-average
kinetic equation for the electrons:

] t f ~m,J,c,ac ,t !5~2pc/e!@H~m,J,c,ac ,t !, f #

1C~ f !. ~11!

Here @a,b#[](a,b)/](c,ac) is the Poisson bracket andH
is the bounce-average Hamiltonian including the fluctuation
potential. The bounce averaging for a passing particle on an
irrational magnetic surfaceq Þ m/n is essentially a flux-
surface averaging. Thus neitherH nor f depend onac in the
passing regionJ.Jc , and the fluctuation transport term in
Eq. ~11! is zero. The turbulent transport of passing particles
appears in the next order inv/vbe!1 ~see Appendix B!.

The bounce-average collision operator can be written in
the particle-conserving form

C@ f ~m,J,c,ac!#52] iG
i , i5~m,J,c,ac!,

G i52Di j ] j f1Ui f , ~12!

where the diffusionDi j and the dynamic frictionUi are lin-
ear integral operators onf .51,52The collisional fluxesGm and
GJ in the ‘‘velocity directions’’ drive the distribution function
to the flux-surface-local Maxwellian,

f 0~m,J,c!5
n~c!

~2pm!1/2T3/2~c!
expF2

mB~ j ,c!

T~c! G , ~13!

on the collisional time scalete5ne
21 . The densityn and the

temperatureT are constant on the flux surfacesc5const
because the distribution function must be constant along the
particle orbits shorter than the mean-free path.

On the other hand, the radial fluxGc specifies the neo-
classical transport, which relaxes the profiles of density and
temperature on a much longer, neoclassical confinement time
scale. According to experimental data~cf. the review Ref.
14!, electron transport is at least by an order of magnitude
greater than predicted by the neoclassical theory. Therefore,
one can neglect the neoclassical radial fluxGc in the colli-
sion operator~12! in comparison with the Hamiltonian term
in ~11!.

If, in addition to the already assumed inequalities
vbe@v,ne , the turbulence correlation frequencyv is much
higher than the collision frequencyne , we can average the
kinetic equation~11! over the turbulent fluctuations. Since
the turbulent drift~6! is incompressible in the (c,ac) plane,
according to Sec. II, this averaging amounts to introducing a
pure diffusion in thec direction. Then we obtain the reduced
kinetic equation,

] t f ~m,J,c,t !5]c@Dcc~m,J,c!]c f #1C~ f !, ~14!

in which all properties of turbulence are concentrated in the
single turbulent diffusion coefficientDcc, which is only dif-
ferent from zero in the trapped regionJ,Jc(m,c). ~See Ap-
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pendix B for a more accurate estimate ofDcc for passing
electrons.! The opposite limit,vbe@ne@v, is considered in
Appendix A.

In addition to turbulence and collisions, particle and en-
ergy sources, when significant, must be included in the right-
hand side of Eq.~14!. Here we do not consider the effect of
the sources.

It is emphasized that, while the diffusion overc was
introduced on purely Hamiltonian grounds and on time
scales much shorter than the collision time, the collision term
in Eq. ~14! can never be neglected, and, in a sense, it is the
main term in the kinetic equation. On the other hand, the
formally small turbulent diffusion term in~14! cannot be
neglected either, because of the strong anisotropy of the
phase space transport: collisions dominate the fluxes in the
‘‘velocity directions’’ of m and J, whereas the turbulence
determines the flux in the radialc direction, and this flux
depends on the collisionally established distribution overm
andJ.

If the collision operator is omitted, the formal steady-
state solution to Eq.~14! is independent ofc, meaning the
constant per-unit-flux densityNe(c)5* f (m,J,c)dmdJ
5 const.42 The usual Cartesian density in this turbulent equi-
partition isn(c) } 1/V 8(c), whereV (c) is the volume in-
side the flux surface,

V 8~c!5 R dl i /B[E
2p

p

L~c,u!du/B~c,u!. ~15!

The ‘‘specific volume’’ ~15! plays a prominent role in the
MHD stability theory.53

The restriction of thec-diffusion to the trapped region
only and the predominance of collisions drive plasma to
more complicated profiles. In the next section we derive
electron transport equations by expanding in the small
c-diffusion term in Eq.~14!.

IV. ELECTRON TRANSPORT EQUATIONS IN
TOROIDAL GEOMETRY

In this section we apply the Chapman-Enskog perturba-
tion procedure to the kinetic equation~14! and derive the
electron particle and energy fluxes driven by the given low-
frequency turbulence.

As stated in Sec. III, the collisional relaxation occurs on
the collision time scalete ; that is, well before an electron is
significantly displaced in the radial direction. It means that
the distribution functionf (m,J,c) is locally Maxwellian,
and the locality refers to flux surfaces. The local Maxwellian
~13! contains two arbitrary functions ofc: the densityn and
the temperatureT. The slow evolution of these functions is
determined by the turbulent diffusivityDcc. Formally, one
seeks solution of Eq.~14! by successive approximations in
the smallDcc. The zeroth-order solution~13! follows from
C( f 0)50. Since we neglect the neoclassical part,]cGc, of
the bounce-average electron collision operator, it conserves
particles and energy locally:

E C~ f !dJdm50, E e~m,J,c!C~ f !dJdm5Qie , ~16!

whereQie is the usual, collisional energy exchange between
ions and electrons. The first-order solutionf 1(m,J,c,t) sat-
isfies

] t f 05]c@Dcc~m,J,c!]c f 0#1C~ f 01 f 1!. ~17!

The actual perturbationf 1 need not be calculated; for the
evolution ofn(c,t) andT(c,t) we only need two solubility
conditions obtained from Eq.~17! by integrating it overm
and J with the weights of 1 ande, respectively. Using the
conservation laws~16!, this results in the electron particle
and energy balance equations:

] tNe52]cGe , ~18!

] tWe52]cqe1Qte1Qie . ~19!

Here, in order to emphasize conservation laws, we use the
per-unit-flux electron densityNe(c,t)5n(c,t)V 8(c) and
the analogously defined electron energy density
We5(3/2)NeT. The dimensions ofGe , qe , and Qte are
particles/s, ergs/s, and ergs/~Wb s!, respectively.

Equations~18! and ~19! involve the following particle
and energy fluxes through the whole magnetic surface:

Ge52E dmdJDcc]c f 0 , qe52E dmdJDcce]c f 0 .

~20!

In addition to the classical ion-electron energy exchange
Qie , Eq. ~19! contains another source term,

Qte52E dmdJ~]ceK!Dcc]c f 0 ,

eK[e2ef5mB~c, j !, ~21!

interpreted as the energy exchange between the turbulence
and the electrons. It is due to the inevitable variation of the
particle kinetic energyeK(m,J,c) in course of displacement
in c under conservedm andJ. The fluxqe and the exchange
term Qte are defined up to a gauge leaving2]cqe1Qte

unchanged. Equation~21! uses the gauge in whichQte van-
ishes in a uniform magnetic field.

Substitution of Eq.~13! into ~20! and ~21! yields the
desired expressions for the fluxes and the energy exchange.
These expressions can be made more explicit by writing the
diffusivity Dcc as a function ofm, j , and c and Taylor
expanding it inm:

Dcc~m, j ,c!5(
l50

`

Dl~ j ,c!m l / l !. ~22!

Then we can writedmdJ5(mm)1/2dmd j and the integrals
overm are solved explicitly. This gives the following:

S Ge

qe

Qte

D 52(
l50

`
~2l11!!!

A8~2l !!!
E
0

`Dld j

B 3/2S TB D lS 2n

nT

nTB8/B
D

3F n8

n
1S l

l11

l11
D T8

T
2S l13/2

l15/2

l15/2
D B8

B G , ~23!
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where the prime denotes differentiation with respect toc.
We see that the fluxesGe andqe contain the usual terms with
the density and the temperature gradients and also the pinch
term with ]cB( j ,c) arising from the inhomogeneity of the
magnetic field.

The expansion~22! is motivated by the possibly weak
dependence ofDcc onm at the fixed pitch anglej and radius
c. The reason is thatj defines the extent of the particle
bounce motion, whereasm determines how fast this motion
occurs. This does not affect the bounce-average fluctuation
HamiltonianH1( j ,c,ac ,t), but m enters the unperturbed
HamiltonianH05ef0(c)1mB( j ,c) ~wheref0 is the po-
tential of the radial electric field! and affects the rate of the
toroidal precession vw52(2pc/e)]cH05qc(2edf0 /
dr1mB/R)/(eBr). The toroidal drift resonance condition
v5kwRvw then leads to am-dependent turbulent diffusivity
Dcc in as much as the quasi-linear theory40 applies and the
m-dependence of the toroidal precession is significant. As the
plasma potentialf0 is typically of order the temperature, the
dependence ofvw onm is proportional tor /R and, for a thin
torus, can be neglected.

Thus, depending on the properties of turbulence and, in
particular, in a thin torus, the dependence ofDcc(m, j ,c) on
m can be weak, and in the series~22! only theD0 term may
be retained. In this case, Eqs.~23! are simplified as follows:

Ge52D̂
dn

dc
1V̂n, ~24!

qe52
3

2
D̂
d~nT!

dc
1
5

2
V̂nT, ~25!

Qte52V̂
d~nT!

dc
1ÛnT, ~26!

where

D̂~c!5~1/A8!E d jD0~ j ,c!B23/2~ j ,c!, ~27!

V̂~c!5~3/2A8!E d jD0B
25/2]cB, ~28!

Û~c!5~15/4A8!E d jD0B
27/2~]cB!2. ~29!

The integration in~27!–~29! extends over the trapped region
0, j, j c , where the diffusivityD0 Þ 0.

In the approximation of the weak dependence of the dif-
fusivity Dcc(m, j ,c) on the trapped particle energy~via
m), the particle flux~24! has no cross term with the tempera-
ture gradient, because the toroidal drift resonance is prima-
rily determined by the radial electric field. The cross term
appears in higher orders of the expansion~23!. In a thin
torus,V̂ } r /R andÛ } (r /R)2. As shown in Sec. V, the pinch
velocity V̂ is usually negative~inward!.

The energy exchange term~26! in Eq. ~19! appears as a
local source term. If, however, we wish to include it into the
divergence of the heat fluxqe , the flux will change by the
non-locally defined quantitydqe52*0

cQtedc. Thus the
turbulence-particle energy exchange results in certain nonlo-
cal features. This kind of nonlocality alone is insufficient to

explain the ‘‘cold pulse’’ experiment7 in which a negative
electron temperature perturbation reverses sign during in-
ward propagation. The mechanism of this effect must depend
on the nondiffusive processesanda nonlinear change in the
turbulent transport coefficients.

The energy of the turbulent fields themselves is negli-
gible in comparison with the thermal energy of particles, and
if electrons release some energy to the turbulence at some
radiusc, the same energy is returned by the turbulence to
particles~electrons or ions! at the same or some other radius
c. Although wave energy transfer mechanisms are
possible,54 the predominantly negative, for the decreasing
electron pressuredpe /dr,0, value ofQte implies a local
anomalous electron-ion energy exchange. This turbulence-
enhanced electron-ion energy exchange channel has not been
previously taken into account in power-balance analyses.
This electron energy loss mechanism could affect the nondi-
mensional transport scalings55 inferred from the power bal-
ance with a classical energy exchange. The sign of the effect
also helps to alleviate the existing difficulties with the expla-
nation of the electron energy losses by fluctuation
transport.56 Normalizing to unit volume and neglecting the
second term in Eq.~26!, the electron energy exchange power
Qe5Qte /V 8(c) can be written

Qe52Ve

dpe
dr

, ~30!

whereVe,0 is the measured in m/s local electron pinch
velocity, and a negativeQe means energy transfer from the
electrons to the ions.

V. CANONICAL PROFILES

In this section we investigate the density and tempera-
ture profiles in the absence of particle and energy fluxes.
These relaxed profiles play the role of canonical profiles in
the sense that the tokamak plasma tends to relax to these
profiles when the particle and energy sources are insignifi-
cant in comparison with the turbulent transport.

The steady-state solution to Eqs.~18! and ~19!, neglect-
ing the collisional energy exchangeQie , defines the relaxed
profiles of the densityn0(c) and the electron pressure
p0(c)5n0(c)T0(c) as follows~prime denotesd/dc):

~ logn0!85V̂~c!/D̂~c!,

3
2 ~D̂p08!82 7

2 V̂p081~Û2 5
2 V̂8!p050. ~31!

Equations~31!, as~24!–~26!, relying on the zeroth-order ex-
pansion~22!, are only valid for a thin torus withr /R!1 and
can be further simplified. The transport coefficientsD̂, V̂,
and Û are determined by trapped particles only. In the
trapped region,j, j c , we haveBmin(c),B( j ,c),Bmax(c),
and thus the derivative]cB;(r /R)B/c is small. So is the
pinch term in ~24!, and the relaxed density profile in this
approximation is only weakly inhomogeneous:

n0~c!5n0~0!F11E
0

c

dc
V̂~c!

D̂~c!
1OS r 2R2D G . ~32!
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Here the integral term isO(r /R). Similarly, the second equa-
tion ~31! yields

p0~c!5p0~0!F11
5

3E0
c

dc
V̂~c!

D̂~c!
1OS r 2R2D G . ~33!

The resulting ‘‘adiabatic’’ profilep0(c) } n0
5/3(c) is the prop-

erty of the expansion toO(r /R); it does not follow from the
underlying kinetic equation~14!.

In general, the relaxed profiles ofn0 andp0 depend on
both the magnetic geometry and the distribution of turbu-
lence viaD0( j ,c). To obtain more explicit canonical pro-
files, we make another, uncontrollable approximation33

wherebyD0( j ,c)5Q@ j c(c)2 j #D0(c); that is, thec diffu-
sion of trapped electrons is independent of the trapping
depth. This would be the case if the parallel turbulence cor-
relation length were much larger than the connection length
L ~the standard assumption is that the two length are of the
same order!. Then the arbitrary amplitudeD0(c) cancels in
Eq. ~32!, and the result depends on the magnetic geometry
only. In the case of circular magnetic surfaces the result is
~see Appendix A!:

n0~r !5n0~0!F12
4

3RE0
r

drS d log q

d log r
1
3

8D 1OS r 2R2D G .
~34!

The corresponding pressure profile is similar and involves
the coefficient of 20/9 in place of the 4/3 in Eq.~34!.

VI. DISCUSSION

Our analysis was focused primarily on electrons for
which the effect of typical turbulent fluctuations was identi-
fied in terms of the trapped electron diffusion over the poloi-
dal flux coordinatec. We stressed that it does matter in
which coordinate the pure diffusion of particles takes place:
the nonlinear relation betweenc ~in which the bounce-
average turbulent diffusion is pure! and the radiusr means
an average radial pinch velocity. Thus the observed convec-
tive fluxes in tokamaks have firm theoretical grounds in
terms of the conservation of adiabatic invariants during the
chaotic particle motion and the Liouville theorem constraints
acting on turbulent time scales, so far as collisions are ig-
nored. Taking collisions into account is possible in a regular
fashion, and the result is a set of transport equations,~18!
and ~19!, involving anomalous, both diffusive and convec-
tive, particle and energy fluxes, and an anomalous electron-
ion energy exchange@Eqs.~23! or ~24!–~26!#.

The transport coefficients depend on the parameters of
turbulence, which is self-consistently related to plasma fuel-
ing and profiles; however, the structure of the electron trans-
port equations is important in its own right even when the
turbulence part of the theory is missing. A notable feature of
this structure is the absence of any conspicuous Onsager
symmetry.57,58 Even though the distribution function is very
close to Maxwellian, the usual entropy-based arguments be-
hind the Onsager symmetry fail because of the predomi-
nantly turbulent mechanisms of the plasma profiles relax-

ation. The pinch effect alone renders the usual transport
matrix nonexistent59 or at least prompts including new ‘‘ther-
modynamic forces’’ such as“B.

Although ions do not conserve their longitudinal invari-
ant J, it does not mean the absence of the anomalous pinch
effect for the ions: The conservation ofm alone induces an
invariant measure with the density proportional to the mag-
netic field. In a thin torus, this is anO(r /R) effect, just as the
collisional pinch effect for electrons. The ion pinch effect
can be formally described by an action-diffusion equation in
which onlym-components of the diffusion tensor are zero. In
any event, the effects of the magnetic geometry on local
transport and the profile formation have to be taken into
account in some form. An interesting problem regarding spe-
cifically ions is the momentum transport, because of the
strong back reaction of plasma rotation on turbulence.60,61

There is experimental evidence of the pinch effect for the
momentum transport.62

It is always necessary to remember the limitations intrin-
sic to the test-particle approach, which we used so far. By
prescribing turbulence in terms of action diffusion coeffi-
cients, for example, we can easily run into the trouble of
violating the quasi-neutrality of plasma with few impurities.
This could not be a problem for energy transport, but, in the
analysis of the particle transport, the quasi-neutrality con-
straint should be built into microscopic field equations long
before any averaging and diffusion approximation are en-
deavored. Of course, each plasma particle, electron or ion,
does move in the turbulent fields, whatever they are, and the
resulting diffusion or diffusion-convection description is
equally appropriate for both electrons and ions. On the level
of averaged description, it is the relation between the various
transport coefficients, which enforces~or reflects! self-
consistency and, particularly, quasi-neutrality.

In this connection, it is appropriate to ask as to which
plasma species, if any, is more amenable to the test-particle
analysis. The simple answer is that both electrons and ions
are correctly described by averaged transport equations, such
as ~4!, correctly derivedfrom the underlying single-particle
Hamiltonian dynamics and supplied with an appropriate col-
lision operator. The more complex answer is that one never
knows the properties of turbulence from pure theory and
therefore makes various approximations to obtain estimates
of the transport coefficients. The applicability of the test-
particle approach must be then defined as the reliability of
simple decorrelation-based estimates, such as
Dcc;^ċ2&/v, and the like.

In our opinion, electrons are better suited for the test-
particle analysis for the following reasons. First and most of
all, the fast parallel motion and the associated adiabatic in-
variantsm andJ make the electron dynamics, while chaotic
and complex, effectively less multidimensional and simpler
than the ion dynamics. The bounce-average drift of trapped
electrons is two dimensional (c,ac) and the transport-
relevant Fokker-Planck description is one dimensional (c).
The corresponding dimensions for the ions are four and two.
On the one hand, the parallel ion motion is strongly coupled
to the cross-field transport and, on the other, the existence of
the whole phase-space diffusion matrix in the (c,J) plane

1922 Phys. Plasmas, Vol. 3, No. 5, May 1996 Isichenko et al.



makes it harder to predict the relaxed density and tempera-
ture profiles, given the unavoidable uncertainties in the dif-
fusion matrix components. The significant banana width of
the ion orbits introduces further complications. The lesser
arbitrariness in the electron transport equations allows us to
derive plasma density profiles based on electrons alone.

The usual reproach cast upon the test-particle analysis is
that it predicts different turbulent diffusivities for the ions
and the electrons. This is also true in the toroidal geometry.
Recalculated for the minor radiusr , the quasi-linear estimate
of the ion diffusivity isDi;(cẼu /Bw)

2/v, whereas the elec-
tron diffusivity, De;(r /R)1/2(cẼw /Bu)

2/v, is proportional
to the fraction (r /R)1/2 of trapped particles subject to the
average drift~6!, or ṙ52cẼw /Bu . As the parallel electric
field Ẽi5(ẼuBu1ẼwBw)/B is usually small, we have
Ẽu /Bw52Ẽw /Bu , and soDi /De;(R/r )1/2 turns out large
in a thin torus. One possibility is that the intrinsic correla-
tions between the parallel ion motion and the turbulent fluc-
tuations make the ion diffusivity much smaller than the
simple quasilinear estimate would predict.~This is the only
option for the case of a uniform magnetic field.! Another
possibility of enforcing the quasi-neutrality lies in the pinch
effect. The fact thatDi@De can simply mean that the diffu-
sive and the convective fluxes of the ions are in a fine bal-
ance yielding total particle flux much less thanDidn/dr.
This possibility also raises implications for the calculation of
the radial electric field other than usual.63

This example, as all the preceding analysis, emphasizes
the role of convective—that is, independent of the density
and temperature gradients—fluxes in toroidal geometry.
These fluxes, or the pinch effect, shape the ‘‘canonical’’ pro-
files. These profiles depend on the properties of turbulence
~itself driven by the gradients! but, under certain approxima-
tions, are determined by the magnetic geometry only. Upon
accepting the inhomogeneous canonical profiles as a new
frame of reference, the particle and heat diffusivities are no
longer the measure of losses but rather the measure of the
resilience of the canonical profiles to externally imposed
fluxes. Under this paradigm, the routinely used transport co-
efficients, such asx i , are no longer crucial confinement pa-
rameters. For example, one can safely setx i5` to merely
say that the ion temperature keeps its canonical profile, no
matter what plasma heating and energy flux there are. In this
extreme limit, the crucial problem of determining the central
temperature boils down to determining the canonicalTi pro-
file and attaching this profile to an appropriate boundary con-
dition at the plasma edge,28 which highlights the role of the
plasma edge physics in the global tokamak confinement.

Both the energy pinch and the anomalous energy ex-
change are important players in the power balance, and they
must be included in studies involving local power-balance
analysis, such as the nondimensionalr* -scaling studies.55,64

The specific predictions regarding the relation between the
diffusivity, the pinch velocity, and the exchange rate, such as
those in Eqs.~24!–~26! and ~27!–~29!, could be useful in
such analyses.
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APPENDIX A: LARGE-ASPECT-RATIO LIMIT

In the limit of a thin torus with circular flux surfaces,
r!R.const, we have

B5B0S 12
rcosu

R D , q~r !5
rB0

RBu~r !
,

~A1!

c~r !52pB0E
0

r rdr

q~r !
, L~r !5q~r !R,

andu is the geometrical poloidal angle around the magnetic
axis. Then the pitch-angle variable~9! is

j5 j cI ~z!, j c58q~B0Rr!
1/2, z5

1

2
1
R

r

B2B0

2B0
,

~A2!

where the functionI is expressed through the complete el-
liptic integralsE andK:

I ~z!5HE~z!2~12z!K~z!, 0,z,1 ~ trapped!,

AzE~1/z!, z.1 ~passing!.
~A3!

Solving Eq. ~A2! for B( j ,c) yields: B5B01B0(r /R)
3@2z( j / j c)21#, where the functionz(I ) is the inverse to
~A3!. In the trapped regionj, j c we havez(I ),1 and thus
B( j ,c) is a week function of radius:

]B~ j ,r !

]r
5
B0

R F2z~ I !2122Iz8~ I !S d log q

d log r
1
1

2D G ,
I5

j

j c~r !
. ~A4!

Upon substituting Eq.~A4! into ~28! and ~32!, result ~34!
follows.

TheO(r /R) pinch effect obtained here for collisionless
electrostatic modes withvbe@v@ne remains also small for
very-low-frequency modes withvbe@ne@v. In this limit,
the collisionless averaging over fluctuations cannot be done,
and one has to start with Eq.~11! instead of~14!. The same
perturbation expansion,f5 f 01 f 11 . . . , can beused in this
case; however, in order to infer the fluxes, one has to actually
solve the first-order equation,

~2pc/e!@H1~m,J,c,ac ,t !, f 0#1C1~ f 1!50, ~A5!

describing the quasi-static collisional response of electrons,
f 1 , to the toroidally asymmetric potential perturbationH1 .
This amounts to the inversion of the linearized collision op-
eratorC1( f 1):
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f 1~m,J,c,ac ,t !5~2pc/e!C1
21

3@]ac
H1~m,J,c,ac ,t !]c f 0~m,J,c!#.

~A6!

The Maxwellianf 0 depends on the magnetic geometry only
via B( j ,c), a weak function ofc in the trapped region, so
the pinch term in the flux due to the perturbationf 1 is again
O(r /R). The cross fluxes@G due toT8(c) and qe due to
n8(c)# are generally not small.

APPENDIX B: TRANSPORT OF PASSING ELECTRONS

Each adiabatic invariantI5r@mv1(e/c)A#•dl involves
the magnetic flux through the relevant nearly closed particle
orbit. A natural extension of the adiabatic invariance to pass-
ing particles can be attempted for a rational magnetic sur-
face,q(c)[dx/dc5m/n, where the magnetic field line is
closed upon n poloidal and m toroidal revolutions:
I (c)5(e/c)@nx(c)2mc#. The conservation ofI (c) seems
to imply c5const, that is, no turbulent transport of passing
electrons.29 In this simple form, however, this argument is
not definitive, because the change ofI in response to an
attempted radial displacement is small:dI/dc5(e/c)
3(nq2m)50, by our definition ofq. We thus expect that
the radial transport of passing particles, even for low-
frequency fluctuations, can be finite, and an estimate of the
effect is needed.

The transport will arise when the resonance condition
v5kiv i is satisfied for a non-exponentially weak part of the
fluctuation spectrum. Here the parallel wavenumber
ki5k•b5(m1nq)/L. The standard assumption that
kiL;1 implies the fluctuation spectrum lying within the
strip um1nqu&1 on the (m,n) plane. The resonance takes
place for the subset of modes withum1nqu&v/vbe;1/10.
As the typical fluctuation harmonics in tokamaks are high,
umu;unuq;30250, the resonant modes are not improbable.
For an irrational q and large n, the quantity
Dn5minmum1nqu, the distance fromnq to the nearest inte-
ger, is a version of the standard computer random-number
generator with the uniform distribution in@0,1/2#. Given
n@1 trials, the minimumDn is of order 1/n, which is less
than v/vbe . Thus there do exist a few (m,n) fluctuation
modes, which are resonant with passing electrons and induce
their transport with finite diffusivitiesDcc, DcJ, andDJJ.

The magnitude of the diffusivityDcc is given by the
integral of theċ correlator:

Dcc5E
0

`

Ccc~ t !dt, Ccc~ t !5^ċ~0!ċ~ t !&. ~B1!

Expanding the potentialf(c,u,w,t)5f(c,u,ac1qu,t) in
a Fourier series over the anglesu and w and in a Fourier
integral over time, and assuming random phases as in the
quasi-linear theory, ^fmnvfm8n8v8&5I mnvdm1m8dn1n8
3 d(v1v8), we find fromċ52pc]wf:

Ccc~ t !5~2pc!2(
mnv

n2I mnve
i ~m1nq!u~ t !2 ivt. ~B2!

For the model spectrum I mnv5(2p)21/2I mn

3 vmn
21exp(2v2/2vmn

2 ), Eq. ~B2! takes the form

Ccc~ t !5~2pc!2(
mn

n2I mne
i ~m1nq!u~ t !2vmn

2 t2/2. ~B3!

For passing particles,u(t) is the ballistic motionvbet plus a
periodic oscillation due to the velocity change in the mag-
netic well; the simplest model isu(t)5vbet1d1sin(vbet).
Then, expandingei (m1nq)d1sin(vbet).11i(m1nq)d1sin(vbet),
we calculate the diffusivity~B1!:

Dcc5A2p~2pc!2(
mn

n2I mnFe2~m1nq!2/2nmn
2

1
~m1nq!d1

2
~e2~m1nq11!2/2nmn

2

2e2~m1nq21!2/2nmn
2

!G . ~B4!

Here the small parameternmn5vmn /vbe!1 is responsible
for selecting the resonant modes withum1nq6 l u,nmn ,
where the definition of the resonant modes is generalized to
account for the periodic change in the particle parallel veloc-
ity. For the purpose of estimate, thel Þ 0 terms in~B4! can
be ignored. The number of (m,n) modes selected by the
requirement of the parallel resonance is determined by the
probability for nq to be within anmn-vicinity of an integer.
As discussed above, the probability is of ordernmn!1. Thus
the sum~44! is estimated as

Dcc.A2p~2pc!2(
mn

n2I mnnmn.~2pcRẼw!2/vbe .

~B5!

A similar estimate for trapped particles involves the turbu-
lence correlation timev in place ofvbe .

Thus the transport of passing electrons can be neglected
in comparison with trapped electrons ifv/vbe!(r /R)1/2. In
this case, the particles get collisionally trapped and undergo a
fasterc-diffusion well before the slow passing transport ac-
cumulates an appreciable effect.
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